


Most of the energy on Earth
comes to us from the Sun.

Did you know?: The amount of sunlight that reaches the Earth is equal to
approximately 6 60w light bulbs for every square meter of the surface.




We can sense that
energy in different
ways. We see the
things around us
because of visible
light...




... And we feel the heat

from a campfire, which
is infrared energy.
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CloudSat ‘

NASA senses the different types of energy
too with satellite instruments.




If all of these types of energy from the Sun
are always shining down on Earth, how does
the Earth manage to maintain the perfect
balance of energy — or equilibrium — that
allows us to live and survive on Earth?

The Sun — hot though it is - is a tiny part of Earth’s
environment. The rest is cold, dark space.




If all of these types of energy from the Sun
are always shining down on Earth, how does
the Earth manage to maintain the perfect
balance of energy — or equilibrium — that
allows us to live and survive on Earth?

Average Surface Temperature
167 C(~332 F)




If all of these types of energy from the Sun
are always shining down on Earth, how does
the Earth manage to maintain the perfect
balance of energy — or equilibrium — that
allows us to live and survive on Earth?

Average Surface Temperature
-65 C (~-85 F)

The planet Mars — “too cold” because it
is farther from the Sun and has a very
thin atmosphere.




If all of these types of energy from the Sun
are always shining down on Earth, how does
the Earth manage to maintain the perfect
balance of energy — or equilibrium — that
allows us to live and survive on Earth?

o

3rd rock from the Sun. Still too cold for
life.

Average Surface Temperature
-18 C(~O F)




If all of these types of energy from the Sun
are always shining down on Earth, how does
the Earth manage to maintain the perfect
balance of energy — or equilibrium — that
allows us to live and survive on Earth?

ST TN

The planet Earth with its atmosphere —
just the right balance for life to survive
and thrive.

Average Surface Temperature
15 C (~59F)




The temperatures of Earth and all the
planets are determined by their
“Energy Budget.”




First, energy enters the Earth system from the Sun.




Some of that energy reflects off of clouds, dust, and other particles and
never makes it to Earth’s surface. Most of that energy, however, does
get to the surface, and once it gets there, the ground, trees, and
everything else around us can absorb the energy.

Earth’s Energy Budget




However, there are some parts of Earth's surface that are
highly reflective, like ice or snow, so in addition to
absorbing energy, it also bounces off of those surfaces and
heads right back out into space.




The world in reflected sunlight, May 25, 2001. Clouds,
deserts and Arctic ice are bright. The south pole is in winter
darkness with no sunlight to reflect.

Clouds and the Earth’s Radiant Energy System (CERES) May 25, 2001

Reflected Shortwave Radiation (W/m2)
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All of that energy that is absorbed by the Earth doesn't just stay there and
build up forever. The Earth system radiates that energy out towards space
as heat. Cold objects emit less energy; warm objects emit more.

Earth’s Energy Budget




Most of the heat emitted from the surface is stopped on its way back out.
Clouds and certain gases in the atmosphere absorb the energy, preventing it
from leaving the system. Only a small window allows direct escape.

Earth’s Ene:rgy Budget




Energy emitted from those clouds and gases goes in all directions. Some
comes back to further warm the Earth. This is the greenhouse effect.

Earth’s Energy Budget




Finally, the surface energy budget is balanced by thermals and evaporation.

Earth’s Energy Budget




Together all of these forms of incoming and outgoing energy have resulted in
just the right living conditions for us on Earth.

Earth’s Energy Budget




The world in emitted heat, May 25, 2001. Deserts are hot;
clouds and polar ice are cold. The south pole is in winter
deep freeze.

Clouds and the Earth’s Radiant Energy System (CERES) May 25, 2001

Outgoing Longwave Radiation (W/m<)

220




Scientists use satellites, ground-based instruments, aircraft field campaigns,
and computer models to determine the magnitude of each flux.

[ ot absorbed
0.2

s in percent

el . Loeb et al., J. Clim. 2009
and are average values based on ten years of data Trenberth et ai,, BAMS, 2009




Like your house, anything that increases or decreases the
amount of incoming or outgoing energy would disturb
Earth’s energy balance and would cause global
temperatures to rise or fall.




Over the last decade, our best estimate is that there is a small positive
imbalance in Earth’s energy budget.

22.7 \

" net absorbed
0.2

_ Loeb et al., J. Clim. 2009
enberth et al., BAMS, 2009




This is consistent with several other lines of evidence of a warming planet.

Ten Indicators of a Warming World

‘} Air Temperature Near Surface (Troposphere)

Humidity

‘ Glaciers

Temperature Over Oceans

Sea Surface Temperature _______

Sea Level

\
t Ocean Heat Content

Seven of these indicators would be expected to increase in a warming world and observations show that they are, in fact, increasing.
Three would be expected to decrease and they are, in fact, decreasing.

http://www.noaanews.noaa.gov/stories2010/images/warmingindicators.jpg




The End
... for now



Details behind the story



Teaching Resources:
The Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

Penetrates

Earth | Y | N . Y | N
Atmosphere?
103 102 105 5x10° 108 1010 1012
AbouttheWW\/W/vaw
&
Buildings Humans HoneyBee Pinpoint Protozoans  Molecules Atoms Atomic Nuclei
Frequency
(Hz)
104 108 1012 1015 1016 108 1020
Temperature
of bodies emitting 5
the wavelength
4 1K 100K 10,000K 10 Million K

http://mynasadata.larc.nasa.gov/scienge-processes/electromagnetic-diagram/




The Blackbody Spectrum
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http://phet.colorado.edu/simulations/sims.php?sim=Blackbody Spectrum
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Equil Temp Calculation — An Equation!

Equil Temp = Temp,,,, * (1-albedo) "* *
Radius,,,, )

Square root(

2 * Distance
Tempg,, ~ 5778K Radiusg,,~ 695,500 km
Albedo ~ 0.3 Distance ~ 149,600,000 km

For Earth: Equil Temp ~254 K = -18 Celsius



Balancing the Budget - |

At the top of the atmosphere:

Equilibrium

+ Sunlight In Temperature:
-18 °C

— Sunlight reflected from clouds/atmosphere
— Sunlight reflected from surface

— IR emission
0

~~rHAI A~ A
eartn's energy budget

reflected by

clouds & reflected by outgoing
. . atmosphere surface infrared radiation
incoming 22.6 6.7 70.5
solar radiation

\ 100
http://mynasadata.Iarc.nasa.go'v/lesson-olans/?oage_id=474?&oassid=44
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Balancing the Budget - |

At the Earth’s surface: Equilibrium
Temperature:
15 °C

+ Sunlight absorbed
— IR emission

+ IR back radiation (greenhouse effect)
— Thermals

— Evapotranspiration

48.0

net absorbed
0.2

All values are fluxes in percent

Loeb et al., J. Clim. 2009
and are average values based on ten years of data R ks 200

http://mynasadata.larc.nasa.gov/lesson-plans/?page_id=4747&passid=63
http://mynasadata.larc.nasa.gov/lesson-plans/?page_id=4747?&passid=67
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Greenhouse Effect

https://www.youtube.com/watch?v=b3NFfWIfj24




Teaching Resources

http://science-edu.larc.nasa.gov/energy budget/

The Story of Energy n tne Eartn System
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Bottom Line:

Balancing the Energy Budget

Just like a family budget for finances,the energy budget of the Earth should be balanced. In equation form
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affnet energy input to the Farth system.
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Teaching Resources

http://mynasadata.larc.nasa.gov/energy-budget-lessons/

ES.13: The student will investigate and understand that energy transfer between the sun
and the Earth and its atmosphere drives weather and climate on Earth.

Surface Air Temperature Trends of the Caribbean 6 — 12 Students will use real satellite data to
determine the changes in near-surface air temperature at different times of the year over the
Caribbean Sea. Near-surface air temperature, October 1999

Seasons and Cloud Cover, Are They Related? 6 — 12 To use NASA satellite data to correlate
cloud cover over Africa to the solar declination.

Storm Clouds— Fly over a Late Winter Storm onboard a NASA Earth Observing Satellite 6 — 12
To use CERES cloud data and a weather map to explore cloud coverage during a winter storm
Storm satellite image

Creating Climographs 6 — 8 To use NASA satellite data to compare surface temperature and
precipitation of different islands in the Pacific Ocean Climactic diagram showing temperture and
preciptation over Guam

Does Humidity Affect Cloud Formation? 6 — 8 Students will use S'COOL data to identify factors
that affect cloud formation. Hydrological cycle model

Earth’'s Energy Budget — Seasonal Cycles in Net Radiative Flux 6,9 — 12 To use CERES
radiation data to understand seasonal variations in the pattern of net energy input to the Earth
system. Net Radiation image

State of the Atmosphere: Interpreting Weather Observations 7 To teach students about air
temperature, dew point temperature and humidity by graphing weather balloon data in Excel
Graph of cloud cover

Comparing Temperature and Solar Radiation for Common Latitudes 7 To use NASA satellite
data to examine the solar radiation received at same latitude locations compared to the surface
temperature of each location Monthly Surface Clear-sky Temperature, March 2000

A Comparison of Cloud Coverage over Africa 8 — 12 To use a NASA satellite data to contrast
amounts of cloud coverage over different climate regions in Africa lllustration of Hadley Cell




Teaching Resources
http://mynasadata.larc.nasa.gov/radiation-energy-budget-web/

Surface Radiation Budget (SRB) Explanation

Daily Surface All-Sky | Daily Surface Clear-Sky | Monthly Surface All-Sky | Monthly Surface Clear-Sky | SRB Explanation/Help

LW Downward Flux‘ LW Upward Flux SW Downward Flux SW Upward Flux

surface radiation budget parameters

Daily Surface All-sky LW Downward Flux (SRB)

Daily - Reported on a dally basis

Surface - Reported at the surface (SFC) using surface instrumenta-

tion or satellite tachniques.

Allsky - includes all observed conditions, including dear or doudy

skies wherever they cccur.

Lnn'W-m (L\N) —infrared energy (heat) emitted by the Earth
wgnetic energy at wavelengths between

about 5 and 25 mm]

D - the d d ing (toward Earth's surface)

energy
Flux = the rate of transfer of a fluid. particles or energy across a

unit area, In the atmosphere, this can be air a partcdar pollutant or
aerosol, or light or heat energy. Here the measurement is of a flow

ed of enangy (which has units of Watts per square meter).

r radiation

'3bf‘0_’be'd by absorbed by y thermals
atmosphere f atmosphere (conduction/
convection}

back

radiation

Example of when this data parameter can be used:

- Whaen interested in the ameunt of heat {infrared) enangy reaching the Earth's
surface.

- This parameser is importans when studying greenty effects and greenh
malmulnurondyaﬁewedbythemwofuhmhdnmo‘phem
{as well as by douds and other parameters).




Teaching Resources: Explore Data
MY NASA DATA Live Access Server (LAS)
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